Module 9: The JWKB Approximation & Applications

9.1 Consider a typical $k^2 x$ variation as shown in Fig. 9.1. We consider an exponentially decaying solution in the region x > b: $\psi x = \frac{1}{\sqrt{\kappa x}} \exp\left[-\int_{b}^{x} \kappa x \, dx\right]$; $\kappa^2 x = -k^2 x$. The solution in the region a < x < b will be

(a)
$$\psi x = \frac{2}{\sqrt{k x}} \sin\left[\int_{x}^{b} k x dx + \frac{\pi}{4}\right]$$

(b) $\psi x = \frac{2}{\sqrt{k x}} \cos\left[\int_{x}^{b} k x dx + \frac{\pi}{4}\right]$
(c) $\psi x = \frac{1}{\sqrt{k x}} \sin\left[\int_{x}^{b} k x dx + \frac{\pi}{4}\right]$
(d) $\psi x = \frac{1}{\sqrt{k x}} \cos\left[\int_{x}^{b} k x dx + \frac{\pi}{4}\right]$

[Answer (a)]

9.2 We assume that the variation of $k^2 x$ as shown in Fig. 9.1 is symmetric in x a = -b. We consider the antisymmetric solution in the region -b < x < b; i.e., in the region -b < x < b,

the JWKB wave function is given by $\psi = x = \frac{1}{\sqrt{k x}} \sin\left[\int_{0}^{x} k x dx\right]$. The JWKB solution in the region x > b will be $\left(\alpha = \int_{0}^{b} k x dx + \frac{\pi}{4}\right)$ (a) $\psi = x = \frac{1}{\sqrt{\kappa x}} \exp\left[-\int_{b}^{x} \kappa x dx\right]$ (b) $\psi = x = \frac{1}{\sqrt{\kappa x}} \exp\left[+\int_{b}^{x} \kappa x dx\right]$ (c) $\psi = x = \frac{\sin \alpha}{\sqrt{\kappa x}} \exp\left[-\int_{b}^{x} \kappa x dx\right] - \frac{\cos \alpha}{\sqrt{\kappa x}} \exp\left[+\int_{b}^{x} \kappa x dx\right]$ (d) $\psi = x = \frac{\sin \alpha}{\sqrt{\kappa x}} \exp\left[+\int_{b}^{x} \kappa x dx\right] - \frac{\cos \alpha}{2\sqrt{\kappa x}} \exp\left[-\int_{b}^{x} \kappa x dx\right]$

[Answer (d)]